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A theorem is proved which gurantees stability under  small perturbations o f  the 
general exponent  of  impulsive nonlinear  systems in a Banach space. 

1. INTRODUCTION 

Recently, in relation to numerous applications, the theory of impulsive 
differential equations has begun to develop rapidly. The first work dedicated 
to this subject was Millman and Myshkis (1960). Other work in this field 
includes Myshkis and Samoilenko (1967), Samoilenko and Perestink (1977), 
and Simeonov and Bainov (1985). 

In the present paper the general exponent of impulsive equations of a 
special type is considered and conditions for its stability under quite natural 
assumptions are found. 

2. STATEMENT OF THE PROBLEM 

Let X be a complex Banach space. Consider the impulsive equation 

dx/dt=f(t,x) (t#t,) (1) 

x(t,+O)=Q,x(t,-O) (n = 1,2, . . . )  (2) 

w h e r e  tl < t2 < �9 �9 �9 a r e  f i x e d  t i m e s  

limn_~o~ tn = 00. 
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of impulses satisfying the condition 
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We shall say that conditions (H) are fulfilled if the following conditions 
hold: 

H1. The function f :  [0, 0o) x X - X is continuous and f ( t ,  O) = O. 
H2. For t o - 0  the Cauchy problem 

dx/d t  =f ( t ,  x), X(to) = Xo (3) 

has a unique solution x(t) ,  which is defined for t - t o .  
H3. The operators Q,, n = 1, 2, . . . ,  are linear, bounded, and map X 

into X. 

Definition 1. We shall call a solution of the impulsive equation (1), 
(2) with initial condition (3) a piecewise continuous function x(t)  (t>_ to) 
with discontinuities of first type at the points tn (n = 1, 2 , . . . )  such that 

d x / d t = f ( t , x ( t ) )  ( t # t , )  

x ( t , + O ) = Q , x ( t , - O )  (n = 1 ,2 , . . . )  

We assume that at the points t, (n = 1, 2 , . . . )  the function X ( t )  is left 
continuous. 

Lemma 1. Let conditions (H) be satisfied. 
Then for (to, Xo)~ [0, oe)x X the Cauchy problem for the impulsive 

equation (1), (2) with initial condition (3) has a unique solution which is 
defined on [to, oo) and satisfies the integral equation 

x(t)  = Q(t, to)Xo+ Q(t, s)f(s, x(s)) ds (4) 
to 

where 

Q(t, .~)= I1 Qk (5) 

The proof of Lemma 1 is carried out on each interval It,,  tn +1) by 
standard methods for nonimpulsive ordinary differential equations. 

By means of the equality 

U(t, to)Xo -- x(t; to, Xo) (6) 

where X( t ;  to, Xo) is a solution of the Cauchy problem for the impulsive 
equation (1), (2) with initial condition (3), we can define a two-parameter 
family of operators U(t, to) (0 <- to <- t<oe)  mapping X into itself. This 
two-parameter family of operators possesses the semigroup property 

U(t, z)U(r,  to) = U(t, to)(O~ to <- r<- t < ~ )  (7) 

but it is not a continuous operator-valued function, since 

u(t.+o,.~)=Q.U(t.-o,-~) ( t .>  ~-) (8) 
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and, analogously, 

U(t, tn+O)=QnU(t, tn-O) ( t >  t,) (9) 

Definition 2. We call a general exponent x(r )  of the impulsive equation 
(1), (2) the greatest lower bound of the number 6 for which there exist 
numbers r and N such that for any solution x(t) satisfying 

Ilx(to)ll-< r (10) 

the following inequality holds as well: 

IIx(t)H -< Ne~<'-')llx('~)li (to-< ~'-< t<co)  (11) 

If  such a number 6 does not exist, we set x(r)= m. 
We note that in the case considered the classical equality 

x ( r ) =  sup lim lnllx(t)ll/nx(~)l] 
[IX( to)i]<_r ~- t - ~ - - - > o z  t - ~" 

is not always valid, since the solutions of the impulsive equations (1), (2) 
are piecewise continuous; therefore, they are not continuously differentiable. 

The numbers N in (11) have to satisfy the inequalities 

IIQnlI-<N (n = 1 , 2 , . . . )  (12) 

Let us consider the conditions under which the impulsive equations 
(1), (2) has a finite general exponent. 

Lemma 2. Let the following conditions be fulfilled: 

1. ]lQ(t,'r)l[-<Me ~('-~) (O<-~-<t-<~) 

where M and 6 are constants. 

2. Ilf(t,x)l[-< ~(t)llxll 

where the funct ion/x( t )  (t->0) is such that 

[ I  ] exp M I~(s) ds - < N e x p [ y ( t - r ) ]  ( 0 -< r -< t<o e )  (13) 
7 

and N and y are constants. 
3. Condition H2 holds. 
Then the general exponent x(r) satisfies the inequality 

K ( r ) - < 6 + y  (14) 

Proof By Lemma 1, from (4), for 0-< ~'-< t < ~ we have 

x(t) = Q(t, T)x(r)+ Q(t, s)f(s, x(s)) ds 
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From conditions 1 and 2 of  Lemma 2 we have 

Ilx(t)ll<-Me~('-')llx(T)ll+ M e~('-'~(s)llx(s)[[ ds 

Applying the lemma of  Gronwall -Bel lman to the last inequality, we 
obtain 

IIx(t)[l<- M{exp[6(t-~')]}llx('r)ll e x p [ M  f]  tz(s) ds] 

The assertion of Lemma 2 follows from condition (13). 
Estimate (14) is rather rough. It does not always allow one to establish 

when the general exponent is negative. This is possible if, for instance, it 
is possible to pass from the initial equation (1), (2) to the impulsive equation 

dz/dt=cz+eC'f( t ,  e-C'z) ( t ~  t,) (15) 

z ( t ,+O)=Q,z ( t , )  (n = 1 , 2 , . . . )  (16) 

with a positive parameter  c, the solutions of which are related to the solutions 
of  (1), (2) by 

z( t) = eC'x( t) 

The verification of condition 1 of Lemma 2 is in general a rather 
complicated problem. In the particular case when the sequence {t,} is an 
arithmetic progression t, = a + nh ( n = 1, 2 , . . .  ; 0 <- a <- h) and Q, = Q (n = 
1, 2 . . . .  ), condition 1 of  Lemma 2 is satisfied for an arbitrary 6 > h -1 In p(Q) ,  
where p (Q)  is the spectral radius of  the operator Q. 

Consider the more general case when the sequences {t,} and {Qn} are 
periodic, i.e., for some constants k and T for n =0 ,  1 , . . .  the conditions 
t,+k = t, + T, Q,+k = Q, hold. In this case condition 1 holds for any 6 > 
T -1 In p ( Q 1 , . . . ,  Qk) 1/k. For the general case simple estimates of  6 are 
unknown to the authors. Condition 2 of  Lemma 2 is verified by means of 
standard methods of mathematical  analysis. 

Remark 1. I f  the conditions of  Lemma 2 are satisfied, the general 
exponents of  all solutions of  the impulsive equation (1), (2) are estimated 
by one and the same number. 

Lemma 3. Let conditions (H) hold. Let us assume, moreover,  that 
there exists a positive number  h such that for some r > 0 the operator-valued 
function U(t, ~-) satisfies the conditions 

(i) IIu(t,~-)xll<-M. Ilxll (It-.~l<--h, llxll<-r) 
(ii) IIU(t+h,t)xll<-f'lLx[I (O<-t<~ llxll<-r) 

where C < 1 and M are constants. 
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Then the general exponent x(p) (p = M-lr)  of the impulsive equation 
(1), (2) satisfies the condition 

K(p) -< h -11n C (17) 

Proof If  ]]Xoll-~r and t=~+nh+O for some positive integer n and 
0 -  < 0 < h, then by the semigroup property (7) and conditions 1 and 2 of 
Lemma 3 we obtain the estimate 

M{ 1 
< - -  exp[h- l n f ( t - r ) ]} l lxo l l  [u(t, ~)xol l-< MC"Hxoll_ c = 

which implies (17). 
Lemma 3 is proved. 

Remark 2. Note that if 6 >  x(r), then for some N the following 
inequality holds: 

I[ u(t, ~)xoll-< Ne~<'-~)llxoll 
If  we set C = Me 8h, then we obtain conditions 1 and 2 of Lemma 3; 
moreover, if we choose h large enough, then the respective estimate for 
x(r) will be close enough to 3. 

3. MAIN RESULTS 

We consider the question of the existence of a finite general exponent 
of the impulsive equation 

dx/dt =f(t, x) + g(t, x) (18) 

x(t, +0) = Q,x(t,) (19) 

where g: [0, oo) x X --> X. 

Definition 3. The function g(t, x) belongs to the class G ( f  u, r) if, for 
equation (18), the assertion of the local theorem for the existence of a 
solution is valid (see, e.g., Daleckii and Krein, 1974) and if, moreover, the 
following conditions holds: 

]lg( t, x)H--< ~llxll ( l lxll-  r) (20) 

Theorem 1. Let the following conditions be satisfied: 
1. Conditions (H) hold. 
2. The function f( t ,  x) satisfies the Lipschitz condition with a constant 

/.t > O: 

If(t, xO- f ( t ,  xz)ll<-lxnx,-x2l[ ([[x,]l, IIx=[I-< r) 

3. ]]Q(t, z)[]---Me a('-~), where 3 < 0 .  
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4. There exists a general exponent xo(r) of the impulsive equation (1), 
(2); moreover,  xo(r)<0. 

Then for any e > 0 there exists numbers p (0 < p -< r) and ~, depending 
only on the function f ( t ,  x) and one the operators Q, (n = 1, 2 , . . . )  such 
that the impulsive equation (18), (19) for g(t, x) ~ G(f, ~, r) has a finite 
general exponent  x(p) satisfying the estimate x(p)<-xo(r)+ e. 

Proof  In the proof  of  Theorem 1 we shall use Lemma 3. Let e > 0 be 
so small that X = xo(r) + e < 0 and xo(r) < A < X. By Definition 2 there exists 
a number  N such that each solution ~:(t) of  the impulsive equation (1), (2) 
satisfying the condition I[~(r)ll < r also satisfies the inequality 

II~(t)l[-< Ne~('-')ll#0")ll 0 " -  < t-<co) (21) 

Let h > 0 be an arbitrary number  such that 

N e  (~-x)h < 1 (22) 

We shall show that the impulsive equation (18), (19) satisfies the conditions 
of  Lemma  3 for C = e xh, whence the proof  of  Theorem 1 will follow. 

Let v > 0 be chosen in such a way that the following inequality holds: 

My e(,~_1) h eM~h( eM(t~+v)h _ 1) --< 1 --  N e (x-x)h ( 2 3 )  
tx+v 

and let the number  p be chosen so that 

where 

pNh <- r (24) 

N h = N  + My eM~,h(eM(~+~)h_l ) 
IZ+V 

We shall show that conditions 1 and 2 of  Lemma 3 hold. 
Let IIx(~)ll -< p. Note that for all t such that the solution of the impulsive 

equation (18), (19) lies in the ball Ilxll- r the following integral identity 
holds: 

x ( t )=Q( t , r ) x ( r )+  Q( t , s ) f ( s ,x (s ) )ds+ Q(t ,s )g(s ,x(s) )ds  
q- 

By conditions 2 and 3 of  Theorem 1, since g(t, x )c  G(f, v, r), we have 

[Ix(t)ll<_Me~('-'~llx(~)ll+ Me~('-')(~z+~,)llx(s)l] ds 

Applying to the last inequality the Gronwall -Bel lman lemma, we obtain 

Ilx(t) II <- M eE~+M("+~)l! '-')IIX(~')II (25) 
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Denote by ~(t) this solution of the impulsive system (1), (2) which 
satisfies the initial condition ~( t )=  x(~-). Then 

x ( t ) -  r = Q(t, s)[f(s,  x ( s ) ) - f ( s ,  ~:(s)] ds + Q(t, s)g(s, x(s)) ds 

from which, as above, we obtain the inequality 

Hx(t)-~(t) l l  <- Me~U-~tzi[x(s)-~(s)]l  ds+ Me~U-')vllx(s)tl ds 
7 

From the above inequality and (25) for t E It, r + h ]  we deduce the 
inequality 

i.e., 

It 
I'Lv e,~(t-r) [Ix( t ) -  ~( t)II <- , M e~('-~) ~ l[x(s)-  ~(s)ll ds +tz + v 

x ( e  M ( " + " ) h  - 1)llx(~)ll 

Applying again the Gronwall-Bellman lemma, we obtain 

i]x(t)_~(t)ll<e~U_~) My (eM(~+~)h 1)IIX(Z)]I e~.h (26) 
/ x+v  

From (21) and (26) it follows that 

Ilx(t)ll ~ II~(t)ll + IIx(t)-d011 

<_ [NeaU_~) + My 
I.L + v 

e ~u-~) eM~'"(e Mu'+~)h - 1)] IIx(~)ll 

rNe(A_x>(,_~) + My e(~_x)(,_~) e,Mh IIx(t)ll 
L �9 / z + v  

• (e M<"§ - 1) e xu-~)] IIx0")ll (27) 

From inequalities (27) and (24) it follows that 

IIx(t)ll<_ NheX"-~qlxO.)l I ('r<-t<-'r+h) 

which implies that the solution x(t)  for t ~ [~-, z+  hi lies in the ball Ilxll <- r. 
Inequalities (27) and (23) imply the validity of the inequality 

IIx(r + h)ll-< eXhllx(r)ll 
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i.e., conditions 1 and 2 of Lemma 3 hold. The proof  of Theorem 1 follows 
from Lemma 3, whence, in particular, we obtain 

x(p)<-A <-~r e 

Theorem 1 is proved. 
Consider the perturbed impulsive equation 

dx/  dt =f ( t ,  x) + g( t, x) (28) 

x( t .  +0) = (Q~ + An)x(tn) (29) 

where A. are linear bounded operators mappings X into itself. 

Definition 4. The sequence {A} belongs to the class D(L, 8, {Q.}) if 
the following condition holds: 

I lO( t , s ) -Q( t , s ) l l<-Le  ~<'-s) (O-<s--- t < ~ )  (30) 

where the operator Q(t, s) is defined by equality (5) and 

( ) ( t , s ) =  H ( Q . + A . )  (31) 
S~tn<t 

Theorem 2. Let the conditions of Theorem 1 hold. 
Then for any e > 0 there exist number p, i,, and L depending only on 

the function f ( t ,  x) and on the operators Q, so that the impulsive equation 
(28), (29) for g(t, x) ~ G(f ,  v, r) and {An} ~ D(L, 8, {Q,}) has a finite general 
exponent ~(p) such that x(p)  < - ~o(r)+ e. 

The proof  of Theorem 2 is a modification of the proof  of Theorem 1. 

Remark 3. In Theorems 1 and 2 the conditions 8 < 0 and xo(r) < 0 are 
not essential. By the exponential substitution x = e~'z for a suitably chosen 
we can reduce the general case to the one when xo(r) and 8 are negative. 
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